Iranian Journal of Radiology

Published by: Kowsar

Improvement of MRI Brain Image Segmentation Using Fuzzy Unsupervised Learning

Keyvan Saneipour 1 and Mojtaba Mohammadpoor ORCID 2 , *
Authors Information
1 Department of Electrical Engineering, Islamic Azad University, Gonabad Branch, Gonabad, Iran
2 Department of Electrical and Computer Engineering, University of Gonabad, Gonabad, Iran
Article information
  • Iranian Journal of Radiology: April 30, 2019, 16 (2); e69063
  • Published Online: January 23, 2019
  • Article Type: Research Article
  • Received: April 3, 2018
  • Revised: December 4, 2018
  • Accepted: December 8, 2018
  • DOI: 10.5812/iranjradiol.69063

To Cite: Saneipour K , Mohammadpoor M. Improvement of MRI Brain Image Segmentation Using Fuzzy Unsupervised Learning, Iran J Radiol. 2019 ; 16(2):e69063. doi: 10.5812/iranjradiol.69063.

Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Ghassabeh YA, Forghani N, Forouzanfar M, Teshnehlab M. MRI fuzzy segmentation of brain tissue using IFCM algorithm with genetic algorithm optimization. Computer Systems and Applications, 2007. AICCSA'07. IEEE/ACS International Conference. 2007 May 13. IEEE; 2007. p. 665-8.
  • 2. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315-37. doi: 10.1146/annurev.bioeng.2.1.315. [PubMed: 11701515].
  • 3. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182-95. doi: 10.1002/mrm.21391. [PubMed: 17969013].
  • 4. Tian D, Fan L. A brain MR images segmentation method based on SOM neural network. Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007. The 1st International Conference. 2007. p. 686-9.
  • 5. Liu J, Li M, Wang J, Wu F, Liu T, Pan Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Science and Technology. 2014;19(6):578-95.
  • 6. Tsochatzidis L, Zagoris K, Arikidis N, Karahaliou A, Costaridou L, Pratikakis I. Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach. Pattern Recognition. 2017;71:106-17. doi: 10.1016/j.patcog.2017.05.023.
  • 7. Dekhil O, Ismail M, Shalaby A, Switala A, Elmaghraby A, Keynton R, et al. A novel CAD system for autism diagnosis using structural and functional MRI. Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium. 2017 Apr 18. IEEE; 2017. p. 995-8.
  • 8. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45-57. doi: 10.1109/42.906424. [PubMed: 11293691].
  • 9. Arora N, Pandey R. Noise adaptive FCM algorithm for segmentation of MRI brain images using local and non-local spatial information. Intelligent Systems Design and Applications (ISDA), 2015 15th International Conference. 2015 Dec 14. IEEE; 2015. p. 610-7.
  • 10. Xiao J, Tong Y. Research of brain MRI image segmentation algorithm based on FCM and SVM. The 26th Chinese Control and Decision Conference (2014 CCDC). 2014 May 31; China. IEEE; 2014. p. 1712-6.
  • 11. Venu N. Performance and evalution of Guassian kernals for FCM algorithm with mean filtering based denoising for MRI segmentation. Communications and Signal Processing (ICCSP), 2014, International Conference. 2014 Apr 3. IEEE; 2014. p. 1680-5.
  • 12. Lan T, Xiao Z, Hu C, Ding Y, Qin Z. MRI brain image segmentation based on Kerneled FCM algorithm and using image filtering method. Audio, Language and Image Processing (ICALIP), 2014 International Conference. 2014 Jul 7. IEEE; 2014. p. 511-5.
  • 13. Nowak RD. Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image Process. 1999;8(10):1408-19. doi: 10.1109/83.791966. [PubMed: 18267412].
  • 14. Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference. 2005. p. 60-5.
  • 15. Hoyer P. Independent component analysis in image denoising. [dissertation]. Helsinki: Helsinki University of Technology; 1999.
  • 16. Jansi S, Subashini P. Modified FCM using genetic algorithm for segmentation of MRI brain images. Computational Intelligence and Computing Research (ICCIC), 2014 IEEE International Conference. 2014 Dec 18. IEEE; 2014. p. 1-5.
  • 17. Eberhart RC, Shi Y, Kennedy J. Swarm intelligence (Morgan Kaufmann series in evolutionary computation). Morgan Kaufmann Publishers; 2001.
  • 18. Han F, Yang C, Wu YQ, Zhu JS, Ling QH, Song YQ, et al. A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information. IEEE/ACM Trans Comput Biol Bioinform. 2017;14(1):85-96. doi: 10.1109/TCBB.2015.2465906. [PubMed: 28182545].
  • 19. Ding W, Lin CT, Prasad M, Cao Z, Wang J. A layered-coevolution-based attribute-boosted reduction using adaptive quantum-behavior PSO and its consistent segmentation for neonates brain tissue. IEEE Transactions on Fuzzy Systems. 2017 Jun 19. 2017. p. 1177-91.
  • 20. BrainWeb . Simulated brain database. BrainWeb; [cited 2014 Apr]. Available from:
  • 21. Kwan RK, Evans AC, Pike GB. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging. 1999;18(11):1085-97. doi: 10.1109/42.816072. [PubMed: 10661326].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments