Iranian Journal of Radiology

Published by: Neoscriber Demo Publisher
Uncorrected Proof scheduled for 16 (1)

Segmentation Refinement of Small-Size Juxta-Pleural Lung Nodules in CT Scans

Jiyu Liu 1 , 2 , Jing Gong 2 , Lijia Wang 2 , Xiwen Sun 1 and Shengdong Nie 2 , *
Authors Information
1 Department of Radiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
2 Institute of Medical Imaging Engineering, School of Medical Instrumentation & Foodstuff, University of Shanghai for Science and Technology, Shanghai, China
Article information
  • Iranian Journal of Radiology: In Press (In Press); e65034
  • Published Online: October 14, 2018
  • Article Type: Research Article
  • Received: December 11, 2017
  • Revised: August 14, 2018
  • Accepted: August 18, 2018
  • DOI: 10.5812/iranjradiol.65034

To Cite: Liu J, Gong J, Wang L, Sun X, Nie S. Segmentation Refinement of Small-Size Juxta-Pleural Lung Nodules in CT Scans, Iran J Radiol. Online ahead of Print ; In Press(In Press):e65034. doi: 10.5812/iranjradiol.65034.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Footnotes
References
  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5-29. doi: 10.3322/caac.21254. [PubMed: 25559415].
  • 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30. doi: 10.3322/caac.21332. [PubMed: 26742998].
  • 3. Truong MT, Ko JP, Rossi SE, Rossi I, Viswanathan C, Bruzzi JF, et al. Update in the evaluation of the solitary pulmonary nodule. Radiographics. 2014;34(6):1658-79. doi: 10.1148/rg.346130092. [PubMed: 25310422].
  • 4. Mozley PD, Schwartz LH, Bendtsen C, Zhao B, Petrick N, Buckler AJ. Change in lung tumor volume as a biomarker of treatment response: A critical review of the evidence. Ann Oncol. 2010;21(9):1751-5. doi: 10.1093/annonc/mdq051. [PubMed: 20332135].
  • 5. Gavrielides MA, Kinnard LM, Myers KJ, Petrick N. Noncalcified lung nodules: Volumetric assessment with thoracic CT. Radiology. 2009;251(1):26-37. doi: 10.1148/radiol.2511071897. [PubMed: 19332844]. [PubMed Central: PMC2663581].
  • 6. Moltz JH, Bornemann L, Kuhnigk JM, Dicken V, Peitgen E, Meier S, et al. Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in ct scans. IEEE J Sel Top Signal Process. 2009;3(1):122-34. doi: 10.1109/jstsp.2008.2011107.
  • 7. Badura P, Pietka E. Soft computing approach to 3D lung nodule segmentation in CT. Comput Biol Med. 2014;53:230-43. doi: 10.1016/j.compbiomed.2014.08.005. [PubMed: 25173811].
  • 8. Messay T, Hardie RC, Tuinstra TR. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset. Med Image Anal. 2015;22(1):48-62. doi: 10.1016/j.media.2015.02.002. [PubMed: 25791434].
  • 9. Lassen BC, Jacobs C, Kuhnigk JM, van Ginneken B, van Rikxoort EM. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Phys Med Biol. 2015;60(3):1307-23. doi: 10.1088/0031-9155/60/3/1307. [PubMed: 25591989].
  • 10. Kubota T, Jerebko AK, Dewan M, Salganicoff M, Krishnan A. Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med Image Anal. 2011;15(1):133-54. doi: 10.1016/j.media.2010.08.005. [PubMed: 20863740].
  • 11. Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915-31. doi: 10.1118/1.3528204. [PubMed: 21452728]. [PubMed Central: PMC3041807].
  • 12. Dhara AK, Mukhopadhyay S, Das Gupta R, Garg M, Khandelwal N. Erratum to: A segmentation framework of pulmonary nodules in lung CT images. J Digit Imaging. 2016;29(1):148. doi: 10.1007/s10278-015-9812-6. [PubMed: 26239518]. [PubMed Central: PMC4722020].
  • 13. Kuhnigk JM, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S, et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging. 2006;25(4):417-34. doi: 10.1109/TMI.2006.871547. [PubMed: 16608058].
  • 14. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell. 1990;12(7):629-39. doi: 10.1109/34.56205.
  • 15. Lopez-Molina C, Galar M, Bustince H, De Baets B. On the impact of anisotropic diffusion on edge detection. Pattern Recognit. 2014;47(1):270-81. doi: 10.1016/j.patcog.2013.07.009.
  • 16. Reeves AP, Chan AB, Yankelevitz DF, Henschke CI, Kressler B, Kostis WJ. On measuring the change in size of pulmonary nodules. IEEE Trans Med Imaging. 2006;25(4):435-50. doi: 10.1109/TMI.2006.871548. [PubMed: 16608059].
  • 17. Kostis WJ, Reeves AP, Yankelevitz DF, Henschke CI. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. IEEE Trans Med Imaging. 2003;22(10):1259-74. doi: 10.1109/TMI.2003.817785. [PubMed: 14552580].
  • 18. Yan C, Sang N, Zhang T. Local entropy-based transition region extraction and thresholding. Pattern Recognit Lett. 2003;24(16):2935-41. doi: 10.1016/s0167-8655(03)00154-5.
  • 19. Wang YC, Liang DQ, Wang Y, Wang GL. Image transition region extraction and segmentation based on neighborhood unhomogeneity. J Optoelectron Lasers. 2008;19(3):404.
  • 20. Li Z, Liu G, Zhang D, Xu Y. Robust single-object image segmentation based on salient transition region. Pattern Recognit. 2016;52:317-31. doi: 10.1016/j.patcog.2015.10.009.
  • 21. Shen S, Bui AA, Cong J, Hsu W. An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy. Comput Biol Med. 2015;57:139-49. doi: 10.1016/j.compbiomed.2014.12.008. [PubMed: 25557199].
  • 22. Saint-Marc P, Chen JS, Medioni G. Adaptive smoothing: A general tool for early vision. IEEE Trans Pattern Anal Mach Intell. 1991;13(6):514-29. doi: 10.1109/34.87339.
  • 23. Zhou S, Cheng Y, Tamura S. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images. Biomed Signal Process Control. 2014;13:62-70. doi: 10.1016/j.bspc.2014.03.010.
  • 24. Gong J, Liu JY, Wang LJ, Sun XW, Zheng B, Nie SD. Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor filtering with local image feature analysis. Physica Medica. 2018;46:124-33.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments