Iranian Journal of Radiology

Published by: Kowsar

Abnormal High Signal Intensity Discovered in Eye Lenses in Routine Brain MRI; Correlation with Ophthalmologist Examination

Amin Abolhasani Foroughi 1 , Mohammad Hossein Nowroozzadeh 2 , Ali Khorsand 3 , * , Masoume Nazeri 4 , Masoud Yasemi 5 and Ruhollah Salahi 3
Authors Information
1 Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
2 Poostchi Eye Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
3 Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
4 Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
5 Health research center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
Article information
  • Iranian Journal of Radiology: January 2018, 15 (1); e61842
  • Published Online: November 15, 2017
  • Article Type: Research Article
  • Received: July 13, 2016
  • Revised: March 12, 2017
  • Accepted: June 17, 2017
  • DOI: 10.5812/iranjradiol.61842

To Cite: Abolhasani Foroughi A, Nowroozzadeh M H, Khorsand A, Nazeri M, Yasemi M, et al. Abnormal High Signal Intensity Discovered in Eye Lenses in Routine Brain MRI; Correlation with Ophthalmologist Examination, Iran J Radiol. 2018 ; 15(1):e61842. doi: 10.5812/iranjradiol.61842.

Abstract
Copyright © 2017, Iranian Journal of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Patient and Methods
4. Results
5. Discussion
Footnotes
References
  • 1. Cheng HM, Yeh LI, Barnett P, Miglior S, Eagon JC, Gonzalez G, et al. Proton magnetic resonance imaging of the ocular lens. Exp Eye Res. 1987;45(6):875-82. [PubMed: 3428403].
  • 2. Townsend KA, Wollstein G, Schuman JS. Clinical application of MRI in ophthalmology. NMR Biomed. 2008;21(9):997-1002. doi: 10.1002/nbm.1247. [PubMed: 18384176].
  • 3. Ahn CB, Anderson JA, Juh SC, Kim I, Garner WH, Cho ZH. Nuclear magnetic resonance microscopic ocular imaging for the detection of early-stage cataract. Invest Ophthalmol Vis Sci. 1989;30(7):1612-7. [PubMed: 2745002].
  • 4. Horng CT, Sun HY, Liu HJ, Lue JH, Yeh SM. Predicting the Incidence of Human Cataract through Retinal Imaging Technology. Int J Environ Res Public Health. 2015;12(11):14800-10. doi: 10.3390/ijerph121114800. [PubMed: 26610533].
  • 5. Dorairaj S, Vatsala V, Vijaya Kumar J, Kesavai R, Sucheethra DS, Vidyasree S. Morphometric and histological study of human cataract lens. J Anat Soc India. 2002;51(1):14-7.
  • 6. Gilliland KO, Johnsen S, Metlapally S, Costello MJ, Ramamurthy B, Krishna PV, et al. Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies. Mol Vis. 2008;14:572-82. [PubMed: 18385793].
  • 7. Williamson TH, Strong NP, Sparrow J, Aggarwal RK, Harrad R. Contrast sensitivity and glare in cataract using the Pelli-Robson chart. Br J Ophthalmol. 1992;76(12):719-22. [PubMed: 1486072].
  • 8. Behndig A, Montan P, Stenevi U, Kugelberg M, Lundstrom M. One million cataract surgeries: Swedish National Cataract Register 1992-2009. J Cataract Refract Surg. 2011;37(8):1539-45. doi: 10.1016/j.jcrs.2011.05.021. [PubMed: 21782099].
  • 9. Erie JC, Baratz KH, Hodge DO, Schleck CD, Burke JP. Incidence of cataract surgery from 1980 through 2004: 25-year population-based study. J Cataract Refract Surg. 2007;33(7):1273-7. doi: 10.1016/j.jcrs.2007.03.053. [PubMed: 17586386].
  • 10. Lizak MJ, Datiles MB, Aletras AH, Kador PF, Balaban RS. MRI of the human eye using magnetization transfer contrast enhancement. Invest Ophthalmol Vis Sci. 2000;41(12):3878-81. [PubMed: 11053289].
  • 11. Dobretsov EA, Snytnikova OA, Koptyug IV, Kaptein R, Tsentalovich YP. Magnetic resonance imaging (MRI) study of the water content and transport in rat lenses. Exp Eye Res. 2013;113:162-71. doi: 10.1016/j.exer.2013.06.008. [PubMed: 23791967].
  • 12. van Rijn GA, Mourik JE, Teeuwisse WM, Luyten GP, Webb AG. Magnetic resonance compatibility of intraocular lenses measured at 7 Tesla. Invest Ophthalmol Vis Sci. 2012;53(7):3449-53. doi: 10.1167/iovs.12-9610. [PubMed: 22538424].
  • 13. Sheppard AL, Evans CJ, Singh KD, Wolffsohn JS, Dunne MC, Davies LN. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation. Invest Ophthalmol Vis Sci. 2011;52(6):3689-97. doi: 10.1167/iovs.10-6805. [PubMed: 21296812].
  • 14. van der Knaap MS, Breiter SN, Naidu S, Hart AA, Valk J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology. 1999;213(1):121-33. doi: 10.1148/radiology.213.1.r99se01121. [PubMed: 10540652].
  • 15. van der Knaap MS, Valk J, de Neeling N, Nauta JJ. Pattern recognition in magnetic resonance imaging of white matter disorders in children and young adults. Neuroradiol. 1991;3:478-93.
  • 16. Patz S, Bert RJ, Frederick E, Freddo TF. T(1) and T(2) measurements of the fine structures of the in vivo and enucleated human eye. J Magn Reson Imaging. 2007;26(3):510-8. doi: 10.1002/jmri.21017. [PubMed: 17729342].
  • 17. Jones CE, Atchison DA, Pope JM. Changes in lens dimensions and refractive index with age and accommodation. Optom Vis Sci. 2007;84(10):990-5. doi: 10.1097/OPX.0b013e318157c6b5. [PubMed: 18049365].
  • 18. Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation. Invest Ophthalmol Vis Sci. 2008;49(6):2531-40. doi: 10.1167/iovs.07-1443. [PubMed: 18408189].
  • 19. Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis. 2011;11(3). doi: 10.1167/11.3.19. [PubMed: 21441300].
  • 20. Garner LF, Smith G, Yao S, Augusteyn RC. Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods. Vision Res. 2001;41(8):973-9. [PubMed: 11301072].
  • 21. Moffat BA, Pope JM. The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens. Magn Reson Imaging. 2002;20(1):83-93. [PubMed: 11973033].
  • 22. Jones CE, Pope JM. Measuring optical properties of an eye lens using magnetic resonance imaging. Magn Reson Imaging. 2004;22(2):211-20. doi: 10.1016/j.mri.2003.07.005. [PubMed: 15010113].
  • 23. Jones CE, Atchison DA, Meder R, Pope JM. Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI). Vision Res. 2005;45(18):2352-66. doi: 10.1016/j.visres.2005.03.008. [PubMed: 15979462].
  • 24. Wu JC, Wong EC, Arrindell EL, Simons KB, Jesmanowicz A, Hyde JS. In vivo determination of the anisotropic diffusion of water and the T1 and T2 times in the rabbit lens by high-resolution magnetic resonance imaging. Invest Ophthalmol Vis Sci. 1993;34(7):2151-8. [PubMed: 8505198].
  • 25. Moffat BA, Pope JM. Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging. Exp Eye Res. 2002;74(6):677-87. [PubMed: 12126942].
  • 26. Vaghefi E, Pontre B, Donaldson PJ, Hunter PJ, Jacobs MD. Visualization of transverse diffusion paths across fiber cells of the ocular lens by small animal MRI. Physiol Meas. 2009;30(10):1061-73. doi: 10.1088/0967-3334/30/10/007. [PubMed: 19738316].
  • 27. Vaghefi E, Pontre BP, Jacobs MD, Donaldson PJ. Visualizing ocular lens fluid dynamics using MRI: manipulation of steady state water content and water fluxes. Am J Physiol Regul Integr Comp Physiol. 2011;301(2):R335-42. doi: 10.1152/ajpregu.00173.2011. [PubMed: 21593426].
  • 28. Vaghefi E, Walker K, Pontre BP, Jacobs MD, Donaldson PJ. Magnetic resonance and confocal imaging of solute penetration into the lens reveals a zone of restricted extracellular space diffusion. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1250-9. doi: 10.1152/ajpregu.00611.2011. [PubMed: 22496364].
  • 29. Moffat BA, Landman KA, Truscott RJ, Sweeney MH, Pope JM. Age-related changes in the kinetics of water transport in normal human lenses. Exp Eye Res. 1999;69(6):663-9. doi: 10.1006/exer.1999.0747. [PubMed: 10620395].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments