Iranian Journal of Radiology

Published by: Kowsar

Left Ventricle Segmentation Using a Combination of Region Growing and Graph Based Method

Mostafa Ghelich Oghli 1 , Maryam Mohammadzadeh 2 , Vahid Mohammadzadeh 3 , Sakineh Kadivar 4 and Ali Mohammad Zadeh 5 , *
Authors Information
1 Department of Biomedical Engineering, Faculty of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Radiology, Amiralam hospital, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Ophthalmology, Farabi Hospital, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Ophthalmology, Amiralmomenin Hospital, Gilan University of Medical Sciences, Gilan, Iran
5 Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
Article information
  • Iranian Journal of Radiology: April 2017, 14 (2); e42272
  • Published Online: January 1, 2017
  • Article Type: Research Article
  • Received: September 19, 2016
  • Revised: November 29, 2016
  • Accepted: December 19, 2016
  • DOI: 10.5812/iranjradiol.42272

To Cite: Ghelich Oghli M, Mohammadzadeh M, Mohammadzadeh V, Kadivar S, Mohammad Zadeh A. Left Ventricle Segmentation Using a Combination of Region Growing and Graph Based Method, Iran J Radiol. 2017 ; 14(2):e42272. doi: 10.5812/iranjradiol.42272.

Abstract
Copyright © 2017, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Cardiac magnetic resonance imaging for the evaluation of ventricular function. Seminars in roentgenology. : 183-92
  • 2. Petitjean C, Dacher JN. A review of segmentation methods in short axis cardiac MR images. Med Image Anal. 2011; 15(2): 169-84[DOI][PubMed]
  • 3. Radau P, Lu Y, Connelly K, Paul G, Dick A, Wright G. Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J Cardiac MR Left Ventricle Segment Challenge. 2009; 49
  • 4. Cardiac MR image segmentation: quality assessment of STACS. Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on. : 828-31
  • 5. Grosgeorge D, Petitjean C, Caudron J, Fares J, Dacher JN. Automatic cardiac ventricle segmentation in MR images: a validation study. Int J Comput Assist Radiol Surg. 2011; 6(5): 573-81[DOI][PubMed]
  • 6. Pluempitiwiriyawej C, Moura JM, Wu YJ, Ho C. STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans Med Imaging. 2005; 24(5): 593-603[DOI][PubMed]
  • 7. Katouzian A, Prakash A, Konofagou E. A new automated technique for left-and right-ventricular segmentation in magnetic resonance imaging. Engineering in Medicine and Biology Society. 28th Annual International Conference of the IEEE. 2006;
  • 8. Automated detection of left ventricle in 4D MR images: experience from a large study. International Conference on Medical Image Computing and Computer-Assisted Intervention. : 728-35
  • 9. Grosgeorge D, Petitjean C, Dacher JN, Ruan S. Graph cut segmentation with a statistical shape model in cardiac MRI. Comput Vision Image Understand. 2013; 117(9): 1027-35[DOI]
  • 10. Lee HY, Codella N, Cham M, Prince M, Weinsaft J, Wang Y. Left ventricle segmentation using graph searching on intensity and gradient and a priori knowledge (lvGIGA) for short-axis cardiac magnetic resonance imaging. J Magn Reson Imaging. 2008; 28(6): 1393-401[DOI][PubMed]
  • 11. Zuluaga MA, Cardoso MJ, Modat M, Ourselin S. Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. International Conference on Functional Imaging and Modeling of the Heart. 2013;
  • 12. Ou Y, Sotiras A, Paragios N, Davatzikos C. DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. Med Image Anal. 2011; 15(4): 622-39[DOI][PubMed]
  • 13. Robust registration between cardiac MRI images and atlas for segmentation propagation. Medical Imaging. : 691408-691408-11
  • 14. Lorenzo-Valdes M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D. Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal. 2004; 8(3): 255-65[DOI][PubMed]
  • 15. Mitchell SC, Lelieveldt BP, van der Geest RJ, Bosch HG, Reiber JH, Sonka M. Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging. 2001; 20(5): 415-23[DOI][PubMed]
  • 16. Active shape models with invariant optimal features (IOF-ASM) application to cardiac MRI segmentation. Computers in Cardiology, 2003. : 633-6
  • 17. Lotjonen J, Kivisto S, Koikkalainen J, Smutek D, Lauerma K. Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Med Image Anal. 2004; 8(3): 371-86[DOI][PubMed]
  • 18. Xu C, Pham DL, Prince JL. Image segmentation using deformable models. Handbook of medical imaging. 2000; : 129-74
  • 19. Peng B, Zhang L, Zhang D. A survey of graph theoretical approaches to image segmentation. Pattern Recognit. 2013; 46(3): 1020-38[DOI]
  • 20. Multilabel random walker image segmentation using prior models. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). : 763-70
  • 21. Dijkstra EW. A note on two problems in connexion with graphs. Numerische Mathematik. 1959; 1(1): 269-71[DOI]
  • 22. Barrett WA, Mortensen EN. Interactive live-wire boundary extraction. Med Image Anal. 1997; 1(4): 331-41[PubMed]
  • 23. Segmentation of 3D objects using live wire. Medical Imaging 1997. : 228-35
  • 24. Hamarneh G, Yang J, McIntosh C, Langille M. 3D live-wire-based semi-automatic segmentation of medical images. Medical imaging. 2005;
  • 25. Liew YM, McLaughlin RA, Chan BT, Abdul Aziz YF, Chee KH, Ung NM, et al. Motion corrected LV quantification based on 3D modelling for improved functional assessment in cardiac MRI. Phys Med Biol. 2015; 60(7): 2715-33[DOI][PubMed]
  • 26. Poon K, Hamarneh G, Abugharbieh R. Live-vessel: Extending livewire for simultaneous extraction of optimal medial and boundary paths in vascular images. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2007;
  • 27. Oghli MG, Fallahi A, Pooyan M. Automatic region growing method using GSmap and spatial information on ultrasound images. 18th Iranian Conference on Electrical Engineering. 2010;
  • 28. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986; 8(6): 679-98[PubMed]
  • 29. Otsu N. A threshold selection method from gray-level histograms. Automatica. 1975; 11(285-296): 23-7
  • 30. Glaser BG. Theoretical sensitivity: Advances in the methodology of grounded theory. 1978;
  • 31. Oghli MG, Fallahi A, Dehlaghi V, Pooyan M. Left ventricle volume measurement on short axis mri images using a combined region growing and superellipse fitting method. Int J Signal Image Proc. 2013; 4(2)
  • 32. Oghli MG, Fallahi A, Dehlaqi V, Pooyan M, Abdollahi N. A Novel Method for Left Ventricle Volume Measurement on Short Axis MRI Images Based on Deformable Superellipses . International Joint Conference on Advances in Signal Processing and Information Technology. 2012;
  • 33. Queiros S, Barbosa D, Heyde B, Morais P, Vilaca JL, Friboulet D, et al. Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal. 2014; 18(7): 1115-31[DOI][PubMed]
  • 34. Anh Ngo T, Carneiro G. Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014;
  • 35. Hu H, Liu H, Gao Z, Huang L. Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming. Magn Reson Imaging. 2013; 31(4): 575-84[DOI][PubMed]
  • 36. Constantinides C, Roullot E, Lefort M, Frouin F. Fully automated segmentation of the left ventricle applied to cine mr images: description and results on a database of 45 subjects. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012;
  • 37. Jolly M. Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J Cardiac MR Left Ventricle Segment Challenge. 2009; 4
  • 38. Liu H, Hu H, Xu X, Song E. Automatic left ventricle segmentation in cardiac MRI using topological stable-state thresholding and region restricted dynamic programming. Acad Radiol. 2012; 19(6): 723-31[DOI][PubMed]
  • 39. Huang S, Liu J, Lee LC, Venkatesh SK, Teo LL, Au C, et al. An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images. J Digit Imaging. 2011; 24(4): 598-608[DOI][PubMed]
  • 40. Schaerer J, Casta C, Pousin J, Clarysse P. A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Med Image Anal. 2010; 14(6): 738-49[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments