Iranian Journal of Radiology

Published by: Kowsar

Association of Ischemic Heart Disease Assessed by Radionuclide Myocardial Perfusion Imaging with Bone Mineral Density Measurements by Dual-Energy X-Ray Absorptiometry and Serum Vitamin D Deficiency

Sina Izadyar 1 , Saeed Farzanehfar 2 , Mina Ranji Amjad 3 , * , Mehrshad Abbasi 2 , Alireza Emami Ardekani 3 , Babak Fallahi 3 , Armaghan Fard Esfehani 3 , Javad Esmaeli 2 , Fariba Akhzari 4 and Parham Geramifar 3
Authors Information
1 Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
2 Research Center for Nuclear Medicine, Valiasr Hospital, Tehran University of Medical Sciences, Tehran, Iran
3 Research Center for Nuclear Medicine, Shariati Hospital Tehran University of Medical Sciences, Tehran, Iran
4 Research Center for Nuclear Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
Article information
  • Iranian Journal of Radiology: April 2017, 14 (2); e38221
  • Published Online: November 5, 2016
  • Article Type: Research Article
  • Received: April 13, 2016
  • Revised: September 14, 2016
  • Accepted: September 30, 2016
  • DOI: 10.5812/iranjradiol.38221

To Cite: Izadyar S, Farzanehfar S, Ranji Amjad M, Abbasi M, Emami Ardekani A, et al. Association of Ischemic Heart Disease Assessed by Radionuclide Myocardial Perfusion Imaging with Bone Mineral Density Measurements by Dual-Energy X-Ray Absorptiometry and Serum Vitamin D Deficiency, Iran J Radiol. 2017 ; 14(2):e38221. doi: 10.5812/iranjradiol.38221.

Abstract
Copyright © 2016, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Sinnott B, Syed I, Sevrukov A, Barengolts E. Coronary calcification and osteoporosis in men and postmenopausal women are independent processes associated with aging. Calcif Tissue Int. 2006; 78(4): 195-202[DOI][PubMed]
  • 2. Hak AE, Pols HA, van Hemert AM, Hofman A, Witteman JC. Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol. 2000; 20(8): 1926-31[PubMed]
  • 3. Tekin GO, Kekilli E, Yagmur J, Uckan A, Yagmur C, Aksoy Y, et al. Evaluation of cardiovascular risk factors and bone mineral density in post menopausal women undergoing coronary angiography. Int J Cardiol. 2008; 131(1): 66-9[DOI][PubMed]
  • 4. Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O'Donnell CJ, Wilson PW. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int. 2001; 68(5): 271-6[PubMed]
  • 5. Tanko LB, Bagger YZ, Christiansen C. Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int. 2003; 73(1): 15-20[PubMed]
  • 6. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V. Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab. 2004; 89(9): 4246-53[DOI][PubMed]
  • 7. Uyama O, Yoshimoto Y, Yamamoto Y, Kawai A. Bone changes and carotid atherosclerosis in postmenopausal women. Stroke. 1997; 28(9): 1730-2[PubMed]
  • 8. Browner WS, Seeley DG, Vogt TM, Cummings SR. Non-trauma mortality in elderly women with low bone mineral density. Study of Osteoporotic Fractures Research Group. Lancet. 1991; 338(8763): 355-8[PubMed]
  • 9. von der Recke P, Hansen MA, Hassager C. The association between low bone mass at the menopause and cardiovascular mortality. Am J Med. 1999; 106(3): 273-8[PubMed]
  • 10. Kado DM, Browner WS, Blackwell T, Gore R, Cummings SR. Rate of bone loss is associated with mortality in older women: a prospective study. J Bone Miner Res. 2000; 15(10): 1974-80[DOI][PubMed]
  • 11. Trivedi DP, Khaw KT. Bone mineral density at the hip predicts mortality in elderly men. Osteoporos Int. 2001; 12(4): 259-65[DOI][PubMed]
  • 12. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999; 353(9156): 878-82[DOI][PubMed]
  • 13. From AM, Hyder JA, Kearns AM, Bailey KR, Pellikka PA. Relationship between low bone mineral density and exercise-induced myocardial ischemia. Mayo Clin Proc. 2007; 82(6): 679-85[PubMed]
  • 14. Ku YC, Liu ME, Ku CS, Liu TY, Lin SL. Relationship between vitamin D deficiency and cardiovascular disease. World J Cardiol. 2013; 5(9): 337-46[DOI][PubMed]
  • 15. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008; 117(4): 503-11[DOI][PubMed]
  • 16. Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhorst U, Wellnitz B, et al. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch Intern Med. 2008; 168(12): 1340-9[DOI][PubMed]
  • 17. Anderson JL, May HT, Horne BD, Bair TL, Hall NL, Carlquist JF, et al. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am J Cardiol. 2010; 106(7): 963-8[DOI][PubMed]
  • 18. de Boer IH, Kestenbaum B, Shoben AB, Michos ED, Sarnak MJ, Siscovick DS. 25-hydroxyvitamin D levels inversely associate with risk for developing coronary artery calcification. J Am Soc Nephrol. 2009; 20(8): 1805-12[DOI][PubMed]
  • 19. Nibbelink KA, Tishkoff DX, Hershey SD, Rahman A, Simpson RU. 1,25(OH)2-vitamin D3 actions on cell proliferation, size, gene expression, and receptor localization, in the HL-1 cardiac myocyte. J Steroid Biochem Mol Biol. 2007; 103(3-5): 533-7[DOI][PubMed]
  • 20. Tishkoff DX, Nibbelink KA, Holmberg KH, Dandu L, Simpson RU. Functional vitamin D receptor (VDR) in the t-tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility. Endocrinology. 2008; 149(2): 558-64[DOI][PubMed]
  • 21. Bodyak N, Ayus JC, Achinger S, Shivalingappa V, Ke Q, Chen YS, et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc Natl Acad Sci U S A. 2007; 104(43): 16810-5[DOI][PubMed]
  • 22. Wu J, Garami M, Cheng T, Gardner DG. 1,25(OH)2 vitamin D3, and retinoic acid antagonize endothelin-stimulated hypertrophy of neonatal rat cardiac myocytes. J Clin Invest. 1996; 97(7): 1577-88[DOI][PubMed]
  • 23. Bakhireva LN, Barrett-Connor EL, Laughlin GA, Kritz-Silverstein D. Differences in association of bone mineral density with coronary artery calcification in men and women: the Rancho Bernardo Study. Menopause. 2005; 12(6): 691-8[DOI][PubMed]
  • 24. Kammerer CM, Dualan AA, Samollow PB, Perisse AR, Bauer RL, MacCluer JW, et al. Bone mineral density, carotid artery intimal medial thickness, and the vitamin D receptor BsmI polymorphism in Mexican American women. Calcif Tissue Int. 2004; 75(4): 292-8[DOI][PubMed]
  • 25. Kim KI, Suh JW, Choi SY, Chang HJ, Choi DJ, Kim CH, et al. Is reduced bone mineral density independently associated with coronary artery calcification in subjects older than 50 years? J Bone Miner Metab. 2011; 29(3): 369-76[DOI][PubMed]
  • 26. Marcovitz PA, Tran HH, Franklin BA, O'Neill WW, Yerkey M, Boura J, et al. Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol. 2005; 96(8): 1059-63[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments