Iranian Journal of Radiology

Published by: Kowsar

Comparison of Brain White Matter Hyperintensities in Methamphetamine and Methadone Dependent Patients and Healthy Controls

Abdulrasool Alaee 1 , * , Mehran Zarghami 2 , Samaneh Farnia 2 , Mohammad Khademloo 3 and Talayeh Khoddad 4
Authors Information
1 Department of Radiology, Mazandaran University of Medical Sciences, Sari, Iran
2 Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran
3 Department of Community Medicine, Mazandaran University of Medical Sciences, Sari, Iran
4 Department of Traditional Medicine, Mazandaran University of Medical Sciences, Sari, Iran
Article information
  • Iranian Journal of Radiology: June 01, 2014, 11 (2); e14275
  • Published Online: June 15, 2014
  • Article Type: Research ArticleNEURORADIOLOGY
  • Received: August 18, 2013
  • Revised: January 5, 2014
  • Accepted: December 8, 2013
  • DOI: 10.5812/iranjradiol.14275

To Cite: Alaee A, Zarghami M, Farnia S, Khademloo M, Khoddad T. Comparison of Brain White Matter Hyperintensities in Methamphetamine and Methadone Dependent Patients and Healthy Controls, Iran J Radiol. 2014 ; 11(2):e14275. doi: 10.5812/iranjradiol.14275.

Copyright © 2014, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
  • 1. Cottencin O, Rolland B, Guardia D, Karila L. [Current data on methamphetamine]. Rev Prat. 2012; 62(5): 679-81[PubMed]
  • 2. Maillard P, Delcroix N, Crivello F, Dufouil C, Gicquel S, Joliot M, et al. An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases. Neuroradiology. 2008; 50(1): 31-42[DOI][PubMed]
  • 3. Bae SC, Lyoo IK, Sung YH, Yoo J, Chung A, Yoon SJ, et al. Increased white matter hyperintensities in male methamphetamine abusers. Drug Alcohol Depend. 2006; 81(1): 83-8[DOI][PubMed]
  • 4. Lyoo IK, Streeter CC, Ahn KH, Lee HK, Pollack MH, Silveri MM, et al. White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects. Psychiatry Res. 2004; 131(2): 135-45[DOI][PubMed]
  • 5. Dager SR, Friedman SD. Brain imaging and the effects of caffeine and nicotine. Ann Med. 2000; 32(9): 592-9[PubMed]
  • 6. Wang Y, Hayashi T, Chang CF, Chiang YH, Tsao LI, Su TP, et al. Methamphetamine potentiates ischemia/reperfusion insults after transient middle cerebral artery ligation. Stroke. 2001; 32(3): 775-82[PubMed]
  • 7. Chang L, Ernst T, Speck O, Patel H, DeSilva M, Leonido-Yee M, et al. Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users. Psychiatry Res. 2002; 114(2): 65-79[PubMed]
  • 8. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002; 159(10): 1642-52[PubMed]
  • 9. Compton WM, Dawson DA, Goldstein RB, Grant BF. Crosswalk between DSM-IV dependence and DSM-5 substance use disorders for opioids, cannabis, cocaine and alcohol. Drug Alcohol Depend. 2013; 132(1-2): 387-90[DOI][PubMed]
  • 10. Hsu C, Parker G, Puranik R. Implantable devices and magnetic resonance imaging. Heart Lung Circ. 2012; 21(6-7): 358-63[DOI][PubMed]
  • 11. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987; 149(2): 351-6[DOI][PubMed]
  • 12. Zarghami M. Methamphetamine has changed the profile of patients utilizing psychiatric emergency services in Iran. Iran J Psychiatry Behav Sci. 2011; 5(1): 1-5
  • 13. Meamar R, Dehghani L, Karamali F. Toxicity effects of methamphetamine on embryonic stem cell-derived neuron. J Res Med Sci. 2012; 17(5): 470-4[PubMed]
  • 14. Chung A, Lyoo IK, Kim SJ, Hwang J, Bae SC, Sung YH, et al. Decreased frontal white-matter integrity in abstinent methamphetamine abusers. Int J Neuropsychopharmacol. 2007; 10(6): 765-75[DOI][PubMed]
  • 15. Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci. 2004; 24(26): 6028-36[DOI][PubMed]
  • 16. Coutinho A, Flynn C, Burdo TH, Mervis RF, Fox HS. Chronic methamphetamine induces structural changes in frontal cortex neurons and upregulates type I interferons. J Neuroimmune Pharmacol. 2008; 3(4): 241-5[DOI][PubMed]
  • 17. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med. 1996; 2(6): 699-703[PubMed]
  • 18. Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction. 2007; 102 Suppl 1: 16-32[DOI][PubMed]
  • 19. Sinchai T, Plasen S, Sanvarinda Y, Jaisin Y, Govitrapong P, Morales NP, et al. Caffeine potentiates methamphetamine-induced toxicity both in vitro and in vivo. Neurosci Lett. 2011; 502(1): 65-9[DOI][PubMed]
  • 20. Yin JJ, Ma SH, Xu K, Wang ZX, Le HB, Huang JZ, et al. Functional magnetic resonance imaging of methamphetamine craving. Clin Imaging. 2012; 36(6): 695-701[DOI][PubMed]
  • 21. Kuhn DM, Geddes TJ. Molecular footprints of neurotoxic amphetamine action. Ann N Y Acad Sci. 2000; 914: 92-103[PubMed]
  • 22. Riddle EL, Fleckenstein AE, Hanson GR. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 2006; 8(2)-8[PubMed]
  • 23. Kiyatkin EA, Brown PL, Sharma HS. Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication: critical role of brain hyperthermia. Eur J Neurosci. 2007; 26(5): 1242-53[DOI][PubMed]
  • 24. Numachi Y, Ohara A, Yamashita M, Fukushima S, Kobayashi H, Hata H, et al. Methamphetamine-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters. Eur J Pharmacol. 2007; 572(2-3): 120-8[DOI][PubMed]
  • 25. Zhang X, Banerjee A, Banks WA, Ercal N. N-Acetylcysteine amide protects against methamphetamine-induced oxidative stress and neurotoxicity in immortalized human brain endothelial cells. Brain Res. 2009; 1275: 87-95[DOI][PubMed]
  • 26. Dietrich JB. Alteration of blood-brain barrier function by methamphetamine and cocaine. Cell Tissue Res. 2009; 336(3): 385-92[DOI][PubMed]
  • 27. Kita T, Miyazaki I, Asanuma M, Takeshima M, Wagner GC. Dopamine-induced behavioral changes and oxidative stress in methamphetamine-induced neurotoxicity. Int Rev Neurobiol. 2009; 88: 43-64[DOI][PubMed]
  • 28. Buttner A. Review: The neuropathology of drug abuse. Neuropathol Appl Neurobiol. 2011; 37(2): 118-34[DOI][PubMed]
  • 29. Dluzen DE, McDermott JL. Developmental and genetic influences upon gender differences in methamphetamine-induced nigrostriatal dopaminergic neurotoxicity. Ann N Y Acad Sci. 2004; 1025: 205-20[DOI][PubMed]
  • 30. Thrash B, Thiruchelvan K, Ahuja M, Suppiramaniam V, Dhanasekaran M. Methamphetamine-induced neurotoxicity: the road to Parkinson's disease. Pharmacol Rep. 2009; 61(6): 966-77[PubMed]
  • 31. Salgado RA, Jorens PG, Baar I, Cras P, Hans G, Parizel PM. Methadone-induced toxic leukoencephalopathy: MR imaging and MR proton spectroscopy findings. AJNR Am J Neuroradiol. 2010; 31(3): 565-6[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments