This study was conducted with the approval of the institutional review board. A retrospective review of the pathologic and surgical databases at our institution from January 2008 to April 2015 for patients diagnosed with ICC identified twelve patients (mean age, 45.7 years; age range, 37-66 years). All 12 patients had a pathologic diagnosis of ICC after mastectomy or conserving surgery and pre-operative radiologic study within a month of the pathologic diagnosis. Patients had undergone mammography, sonography, MRI, and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) pre-operatively.
3.1. Mammography
Craniocaudal and mediolateral oblique views were obtained by mammography, using the Lorad Selenia (Hologic Inc., Bedford, MA, USA). Parenchymal patterns were categorized as one of the following: almost entirely fatty, scattered fibroglandular tissue, heterogeneously dense, and extremely dense. Each mammogram was analyzed for mass lesions, asymmetric densities, architectural distortion, and calcifications. If a definite mass was present, the size, shape, margin, and density were also classified.
3.2. Sonography
Sonography was performed using the LOGIQ 9 (GE Healthcare, Milwaukee, WI, USA) with a broad-bandwidth 14 - 5 MHz linear probe. All patients underwent examinations of both breasts and axillary lymph nodes. Each lesion was analyzed for size, echogenicity, shape, orientation, margin, posterior features, vascularity, and associated calcifications. We recorded the maximum tumor diameter as the size of the mass (9).
3.3. Magnetic Resonance Imaging (MRI)
MRI was performed using a 3.0-T Scanner (Achieva 3.0T TX; Philips Healthcare, Best, the Netherlands) and a breast coil (MRI devices; InVivo research, Orlando, FL, USA), with the patient in the prone position. Images were acquired in the axial plane with the following sequences: axial, diffusion-weighted, spin-echo single-shot echo-planar-imaging with diffusion-sensitizing gradients (repetition time (TR)/echo time (TE), 5471/72; b values, 0, 600, and 1000 s/mm2; image matrix, 96 × 126; field of view [FOV], 320 × 320 mm; section thickness, 3 mm; section gap, 0 mm; three signal acquired; and acquisition time, 80 s); axial, T2-weighted, fat-suppressed, fast spin-echo imaging (TR/TE, 5727/70; flip angle, 90°; field of view [FOV], 581 × 342 mm; image matrix, 620 × 309; section thickness, 3 mm; and section gap, 0 mm); pre- and post-contrast enhanced, axial, T1-weighted three-dimensional (3D) fast spoiled gradient echo sequence (TR/TE, 6/3; flip angle, 0°; FOV, 330 × 340 mm; image matrix, 436 × 436; section thickness, 3 mm; and section gap, 1.5 mm). Fifteen mL of gadodiamide (Omniscan, GE Healthcare, Oslo, Norway) was injected intravenously into an antecubital vein with a power injector (Medrad® Spectris, Indianola, PA, USA) at a rate of 2 mL/s. Imaging was performed before the injection and six times after the injection, occurring immediately and then at intervals of 1 minute. The images post-processing, included the subtraction of unenhanced images from enhanced images and 3D maximum-intensity projections by using the first contrast-enhanced series. The interpretation of enhancement degree and kinetic patterns was performed using computer-aided diagnosis (CAD) stream TM (Merge health care, Chicago, IL, USA). The kinetic curves were analyzed as three types: type I, progressive continuous enhancement; type II, initial uptake followed with delayed plateau; and type III, initial rapid uptake with delayed washout. The size, shape, margin, enhancement pattern, and multiplicity were recorded as well as the associated findings, such as nipple retraction, skin retraction or thickening, hematoma, and pectoralis muscle or chest wall invasion.
All mammographic, sonographic, and MR images were reviewed by two radiologists in consensus and categorized according to American college of radiology breast imaging reporting and data system (ACR BI-RADS®) lexicon to make a final assessment.
3.4. 18F-FDG PET-CT
18F-FDG PET-CT imaging was performed using a Gemini TF (Philips medical systems, Cleveland, OH, USA). Normal fasting blood glucose levels (after fasting for at least 6 hours) were < 180 mg/dL for all patients. An intravenous injection of 370 - 480 MBq (10 - 13 mCi) of FDG was administered according to body weight. Fifty minutes after the injection, pre-contrast CT scans were performed from the skull base to the upper thigh using the 16-channel scanner Brilliance 16 (Philips medical systems, Cleveland, OH, USA) with the following settings: 120 kVp; 50 mA; rotation time, 0.75 second; slice collimation, 0.75 mm; FOV, 60 cm; matrix, 512 × 512; and 4-mm scan reconstruction with a reconstruction index of 4 mm. These CT data were used for attenuation correction and anatomical correlation. Immediately after the CT scans, PET scans were performed for the same body region. PET acquisition data were reconstructed using the 3D Row Action Maximum Likelihood Algorithm and the CT scan data. The analysis of 18F-FDG PET-CT was done by experienced nuclear medicine physicians to determine abnormal FDG uptake in the breast parenchyma, chest wall, and axilla compared to that for normal tissue.
3.5. Pathological Examination
Diagnoses were made using specimens obtained from conserving operations or mastectomies. Histopathologic findings were reviewed by two experienced breast pathologists in consensus. The final tumor size, histological grade, presence of axillary lymph node metastasis, percentage of a ductal carcinoma in situ (DCIS) component, and the results of immunohistochemical tests for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) were recorded. The statuses of ER and PR were evaluated according to the American society of clinical oncology/college of American pathologists (ASCO/CAP) guidelines for immunohistochemistry. ER and PR were considered positive if there were at least 1% positive tumor nuclei. HER2 immunostaining was read in a semi-quantitative manner and graded as follows: 0, 1+, 2+ and 3+. Intensity scores of 0 or 1+ were designated as negative expression, 2+ as equivocal expression, and 3+ as positive expression for HER-2/neu (10). Scores of 2+ were considered equivocal, and those samples were further recommended for fluorescent in situ hybridization (FISH) analysis (10) Specimens were also considered to be HER2-positive when they were shown to be positive by FISH (2).
LEAVE A COMMENT HERE: