Iranian Journal of Radiology

Published by: Kowsar

In Vivo Evaluation of the Biomechanical Properties of Optic Nerve and Peripapillary Structures by Ultrasonic Shear Wave Elastography in Glaucoma

Atilla Suleyman Dikici 1 , Ismail Mihmanli 1 , Fahrettin Kilic 1 , Ahmet Ozkok 2 , Gokhan Kuyumcu 1 , Pinar Sultan 2 , Cesur Samanci 1 , Mehmet Halit Yilmaz 1 , Babak Rafiee 1 , Nevbahar Tamcelik 2 , Zehra Isik Hasiloglu 1 , * and Fatih Kantarci 1
Authors Information
1 Department of Radiology, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
2 Department of Ophthalmology, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
Article information
  • Iranian Journal of Radiology: April 01, 2016, 13 (2); e36849
  • Published Online: March 31, 2016
  • Article Type: Research Article
  • Received: February 3, 2016
  • Revised: February 27, 2016
  • Accepted: March 15, 2016
  • DOI: 10.5812/iranjradiol.36849

To Cite: Dikici A S, Mihmanli I, Kilic F, Ozkok A, Kuyumcu G, et al. In Vivo Evaluation of the Biomechanical Properties of Optic Nerve and Peripapillary Structures by Ultrasonic Shear Wave Elastography in Glaucoma, Iran J Radiol. 2016 ; 13(2):e36849. doi: 10.5812/iranjradiol.36849.

Abstract
Copyright © 2016, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012; 96(5): 614-8[DOI][PubMed]
  • 2. Casson RJ, Chidlow G, Wood JP, Crowston JG, Goldberg I. Definition of glaucoma: clinical and experimental concepts. Clin Experiment Ophthalmol. 2012; 40(4): 341-9[DOI][PubMed]
  • 3. Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003; 44(12): 5189-95[PubMed]
  • 4. Crawford Downs J, Roberts MD, Sigal IA. Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Exp Eye Res. 2011; 93(2): 133-40[DOI][PubMed]
  • 5. Ozkok A, Tamcelik N, Ozdamar A, Sarici AM, Cicik E. Corneal viscoelastic differences between pseudoexfoliative glaucoma and primary open-angle glaucoma. J Glaucoma. 2013; 22(9): 740-5[DOI][PubMed]
  • 6. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005; 31(1): 156-62[DOI][PubMed]
  • 7. Sander EA, Downs JC, Hart RT, Burgoyne CF, Nauman EA. A cellular solid model of the lamina cribrosa: mechanical dependence on morphology. J Biomech Eng. 2006; 128(6): 879-89[DOI][PubMed]
  • 8. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005; 46(11): 4189-99[DOI][PubMed]
  • 9. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res. 2007; 85(3): 312-22[DOI][PubMed]
  • 10. Braunsmann C, Hammer CM, Rheinlaender J, Kruse FE, Schaffer TE, Schlotzer-Schrehardt U. Evaluation of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy. Invest Ophthalmol Vis Sci. 2012; 53(6): 2960-7[DOI][PubMed]
  • 11. Hernandez MR, Pena JD. The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol. 1997; 115(3): 389-95[PubMed]
  • 12. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci. 2012; 53(4): 1714-28[DOI][PubMed]
  • 13. Berg WA, Cosgrove DO, Dore CJ, Schafer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012; 262(2): 435-49[DOI][PubMed]
  • 14. Cosgrove DO, Berg WA, Dore CJ, Skyba DM, Henry JP, Gay J, et al. Shear wave elastography for breast masses is highly reproducible. Eur Radiol. 2012; 22(5): 1023-32[DOI][PubMed]
  • 15. Tanter M, Bercoff J, Athanasiou A, Deffieux T, Gennisson JL, Montaldo G, et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol. 2008; 34(9): 1373-86[DOI][PubMed]
  • 16. Evans A, Whelehan P, Thomson K, McLean D, Brauer K, Purdie C, et al. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res. 2010; 12(6)[DOI][PubMed]
  • 17. Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010; 95(12): 5281-8[DOI][PubMed]
  • 18. Lalitha P, Reddy M, Reddy KJ. Musculoskeletal applications of elastography: a pictorial essay of our initial experience. Korean J Radiol. 2011; 12(3): 365-75[DOI][PubMed]
  • 19. Zeiter JH, Shin DH, Juzych MS, Jarvi TS, Spoor TC, Zwas F. Visual field defects in patients with normal-tension glaucoma and patients with high-tension glaucoma. Am J Ophthalmol. 1992; 114(6): 758-63[PubMed]
  • 20. Brusini P, Filacorda S. Enhanced Glaucoma Staging System (GSS 2) for classifying functional damage in glaucoma. J Glaucoma. 2006; 15(1): 40-6[PubMed]
  • 21. Ren R, Wang N, Li B, Li L, Gao F, Xu X, et al. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci. 2009; 50(5): 2175-84[DOI][PubMed]
  • 22. Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, et al. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci. 2007; 48(10): 4597-607[DOI][PubMed]
  • 23. Yang H, Downs JC, Bellezza A, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci. 2007; 48(11): 5068-84[DOI][PubMed]
  • 24. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004; 45(12): 4378-87[DOI][PubMed]
  • 25. Agladioglu K, Pekel G, Altintas Kasikci S, Yagci R, Kiroglu Y. An evaluation of ocular elasticity using real-time ultrasound elastography in primary open-angle glaucoma. Br J Radiol. 2016; 89(1060): 20150429[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments