Iranian Journal of Radiology

Published by: Kowsar

Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code

Lida Gholamkar 1 , Ali Asghar Mowlavi 2 , 3 , * , Mahdi Sadeghi 4 and Mitra Athari 1
Authors Information
1 Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Physics Department, Hakim Sabzevari University, Sabzevar, Iran
3 International Center for Theoretical Physics (ICTP), Associate Federation Scheme, Medical Physics Field, Trieste, Italy
4 Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
Article information
  • Iranian Journal of Radiology: October 01, 2016, 13 (4); e36484
  • Published Online: August 1, 2016
  • Article Type: Research Article
  • Received: January 22, 2016
  • Revised: March 4, 2016
  • Accepted: May 2, 2016
  • DOI: 10.5812/iranjradiol.36484

To Cite: Gholamkar L, Mowlavi A A, Sadeghi M, Athari M. Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code, Iran J Radiol. 2016 ; 13(4):e36484. doi: 10.5812/iranjradiol.36484.

Abstract
Copyright © 2016, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Ma AK, Darambara DG, Stewart A, Gunn S, Bullard E. Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations. Med Phys. 2008; 35(12): 5278-89[DOI][PubMed]
  • 2. Dance DR. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol. 1990; 35(9): 1211-9[PubMed]
  • 3. Nigapruke K, Puwanich P, Phaisangittisakul N, Youngdee W. Monte Carlo simulation of average glandular dose and an investigation of influencing factors. J Radiat Res. 2010; 51(4): 441-8[PubMed]
  • 4. Baptista M, Di Maria S, Oliveira N, Matela N, Janeiro L, Almeida P, et al. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study. Radiat Phys Chem. 2014; 104: 158-62
  • 5. Choi YN, Kim HJ, Park HS, Lee CL, Cho HM, Lee SW, et al. The effect of magnification on the image quality and the radiation dose in X-ray digital mammography: a Monte Carlo simulation study. J Korean Phys Soc. 2010; 57(3): 494-500
  • 6. Baldelli P, Phelan N, Egan G. Investigation of the effect of anode/filter materials on the dose and image quality of a digital mammography system based on an amorphous selenium flat panel detector. Br J Radiol. 2010; 83(988): 290-5[DOI][PubMed]
  • 7. Dance DR, Thilander AK, Sandborg M, Skinner CL, Castellano IA, Carlsson GA. Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: a Monte Carlo study. Br J Radiol. 2000; 73(874): 1056-67[DOI][PubMed]
  • 8. Dance DR, Skinner CL, Carlsson GA. Breast dosimetry. Appl Radiat Isot. 1999; 50(1): 185-203[PubMed]
  • 9. Bernhardt P, Mertelmeier T, Hoheisel M. X-ray spectrum optimization of full-field digital mammography: simulation and phantom study. Med Phys. 2006; 33(11): 4337-49[DOI][PubMed]
  • 10. Pelowitz D. MCNP-A general Monte Carlo N-particle transport code. Version 2.6.0. 2008;
  • 11. Hammerstein GR, Miller DW, White DR, Masterson ME, Woodard HQ, Laughlin JS. Absorbed radiation dose in mammography. Radiology. 1979; 130(2): 485-91[DOI][PubMed]
  • 12. Tissue substitutes in radiation dosimetry and measurement ICRU Report 44. 1989;
  • 13. Hubbell JH, Seltzer SM. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. 1995;
  • 14. Berger M, Hubblle H. XCOM version 3.1. 1999;
  • 15. Ma AK, Alghamdi A. Development of a realistic computational breast phantom for dosimetric simulations. Nucl Sci Thech. 2011; 2: 147-52
  • 16. Boone JM. Glandular breast dose for monoenergetic and high-energy X-ray beams: Monte Carlo assessment. Radiology. 1999; 213(1): 23-37[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments