Iranian Journal of Radiology

Published by: Kowsar

Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code

Lida Gholamkar 1 , Ali Asghar Mowlavi 2 , 3 , * , Mahdi Sadeghi 4 and Mitra Athari 1
Authors Information
1 Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Physics Department, Hakim Sabzevari University, Sabzevar, Iran
3 International Center for Theoretical Physics (ICTP), Associate Federation Scheme, Medical Physics Field, Trieste, Italy
4 Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
Article information
  • Iranian Journal of Radiology: October 01, 2016, 13 (4); e36484
  • Published Online: August 1, 2016
  • Article Type: Research Article
  • Received: January 22, 2016
  • Revised: March 4, 2016
  • Accepted: May 2, 2016
  • DOI: 10.5812/iranjradiol.36484

To Cite: Gholamkar L, Mowlavi A A, Sadeghi M, Athari M. Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code, Iran J Radiol. 2016 ; 13(4):e36484. doi: 10.5812/iranjradiol.36484.

Copyright © 2016, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Ma AK, Darambara DG, Stewart A, Gunn S, Bullard E. Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations. Med Phys. 2008; 35(12): 5278-89[DOI][PubMed]
  • 2. Dance DR. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol. 1990; 35(9): 1211-9[PubMed]
  • 3. Nigapruke K, Puwanich P, Phaisangittisakul N, Youngdee W. Monte Carlo simulation of average glandular dose and an investigation of influencing factors. J Radiat Res. 2010; 51(4): 441-8[PubMed]
  • 4. Baptista M, Di Maria S, Oliveira N, Matela N, Janeiro L, Almeida P, et al. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study. Radiat Phys Chem. 2014; 104: 158-62
  • 5. Choi YN, Kim HJ, Park HS, Lee CL, Cho HM, Lee SW, et al. The effect of magnification on the image quality and the radiation dose in X-ray digital mammography: a Monte Carlo simulation study. J Korean Phys Soc. 2010; 57(3): 494-500
  • 6. Baldelli P, Phelan N, Egan G. Investigation of the effect of anode/filter materials on the dose and image quality of a digital mammography system based on an amorphous selenium flat panel detector. Br J Radiol. 2010; 83(988): 290-5[DOI][PubMed]
  • 7. Dance DR, Thilander AK, Sandborg M, Skinner CL, Castellano IA, Carlsson GA. Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: a Monte Carlo study. Br J Radiol. 2000; 73(874): 1056-67[DOI][PubMed]
  • 8. Dance DR, Skinner CL, Carlsson GA. Breast dosimetry. Appl Radiat Isot. 1999; 50(1): 185-203[PubMed]
  • 9. Bernhardt P, Mertelmeier T, Hoheisel M. X-ray spectrum optimization of full-field digital mammography: simulation and phantom study. Med Phys. 2006; 33(11): 4337-49[DOI][PubMed]
  • 10. Pelowitz D. MCNP-A general Monte Carlo N-particle transport code. Version 2.6.0. 2008;
  • 11. Hammerstein GR, Miller DW, White DR, Masterson ME, Woodard HQ, Laughlin JS. Absorbed radiation dose in mammography. Radiology. 1979; 130(2): 485-91[DOI][PubMed]
  • 12. Tissue substitutes in radiation dosimetry and measurement ICRU Report 44. 1989;
  • 13. Hubbell JH, Seltzer SM. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. 1995;
  • 14. Berger M, Hubblle H. XCOM version 3.1. 1999;
  • 15. Ma AK, Alghamdi A. Development of a realistic computational breast phantom for dosimetric simulations. Nucl Sci Thech. 2011; 2: 147-52
  • 16. Boone JM. Glandular breast dose for monoenergetic and high-energy X-ray beams: Monte Carlo assessment. Radiology. 1999; 213(1): 23-37[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments