Iranian Journal of Radiology

Published by: Kowsar

Assessing Absorption Coefficient of Hemoglobin in the Breast Phantom Using Near-Infrared Spectroscopy

Parinaz Mehnati 1 , Maede Jafari Tirtash 1 , * , Mohammad Sadegh Zakerhamidi 2 and Parisa Mehnati 2
Authors Information
1 Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
2 Research Institute for Applied Physics and Astronomy, Tabriz University, Tabriz, Iran
Article information
  • Iranian Journal of Radiology: October 01, 2016, 13 (4); e31581
  • Published Online: June 25, 2016
  • Article Type: Research Article
  • Received: July 16, 2015
  • Revised: November 5, 2015
  • Accepted: November 15, 2015
  • DOI: 10.5812/iranjradiol.31581

To Cite: Mehnati P, Jafari Tirtash M, Zakerhamidi M S, Mehnati P. Assessing Absorption Coefficient of Hemoglobin in the Breast Phantom Using Near-Infrared Spectroscopy, Iran J Radiol. 2016 ; 13(4):e31581. doi: 10.5812/iranjradiol.31581.

Abstract
Copyright © 2016, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
References
  • 1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5)-86[DOI][PubMed]
  • 2. Fletcher SW, Elmore JG. Clinical practice. Mammographic screening for breast cancer. N Engl J Med. 2003; 348(17): 1672-80[DOI][PubMed]
  • 3. Humphrey LL, Helfand M, Chan BK, Woolf SH. Breast cancer screening: a summary of the evidence for the US Preventive Services Task Force. Annals Internal Medicine. 2002; 137: 347-60
  • 4. Fantini S, Sassaroli A. Near-infrared optical mammography for breast cancer detection with intrinsic contrast. Ann Biomed Eng. 2012; 40(2): 398-407[DOI][PubMed]
  • 5. van de Ven SM, Elias SG, van den Bosch MA, Luijten P, Mali WP. Optical imaging of the breast. Cancer Imaging. 2008; 8: 206-15[DOI][PubMed]
  • 6. Vacas-Jacques P, Strojnik M, Paez G. Forward-calculated analytical interferograms in pass-through photon-based biomedical transillumination. J Opt Soc Am A Opt Image Sci Vis. 2009; 26(3): 602-12[PubMed]
  • 7. Vacas-Jacques P, Paez G, Strojnik M. Pass-through photon-based biomedical transillumination. J Biomed Opt. 2008; 13(4): 41307[DOI][PubMed]
  • 8. Gratton E, Toronov V, Wolf U, Wolf M, Webb A. Measurement of brain activity by near-infrared light. J Biomed Opt. 2005; 10(1): 11008[DOI][PubMed]
  • 9. Choi J, Wolf M, Toronov V, Wolf U, Polzonetti C, Hueber D, et al. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J Biomed Opt. 2004; 9(1): 221-9[DOI][PubMed]
  • 10. Bender JE, Shang AB, Moretti EW, Yu B, Richards LM, Ramanujam N. Noninvasive monitoring of tissue hemoglobin using UV-VIS diffuse reflectance spectroscopy: a pilot study. Opt Express. 2009; 17(26): 23396-409[DOI][PubMed]
  • 11. Leff DR, Warren OJ, Enfield LC, Gibson A, Athanasiou T, Patten DK, et al. Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res Treat. 2008; 108(1): 9-22[DOI][PubMed]
  • 12. Sahu A, McGoverin C, Pleshko N, Sorenmo K, Won CH. Hyperspectral imaging system to discern malignant and benign canine mammary tumors. SPIE Defense, Security, and Sensing. 2013;
  • 13. Rice A, Quinn CM. Angiogenesis, thrombospondin, and ductal carcinoma in situ of the breast. J Clin Pathol. 2002; 55(8): 569-74[PubMed]
  • 14. Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist. 2004; 9 Suppl 5: 4-9[DOI][PubMed]
  • 15. Taroni P, Pifferi A, Torricelli A, Spinelli L, Danesini GM, Cubeddu R. Do shorter wavelengths improve contrast in optical mammography? Phys Med Biol. 2004; 49(7): 1203-15[PubMed]
  • 16. Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, et al. Sources of absorption and scattering contrast for near-infrared optical mammography. Acad Radiol. 2001; 8(3): 211-8[DOI][PubMed]
  • 17. Chang VTC, Cartwright PS, M BS, Palmer GM, Bentley RC, Ramanujam N. Quantitative Physiology of the Precancerous Cervix< i> In Vivo</i> through Optical Spectroscopy. Neoplasa. 2009; 11(4): 325-32
  • 18. Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N. Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res. 2009; 69(7): 2919-26[DOI][PubMed]
  • 19. Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, et al. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt. 2008; 13(2): 24012[DOI][PubMed]
  • 20. Amelink A, Kaspers OP, Sterenborg HJ, van der Wal JE, Roodenburg JL, Witjes MJ. Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy. Oral Oncol. 2008; 44(1): 65-71[DOI][PubMed]
  • 21. Xu XG, Eckerman KF. Handbook of anatomical models for radiation dosimetry. 2009;
  • 22. DeWerd LA, Kissick M. The Phantoms of Medical and Health Physics Devices for Research and Development. 2014;
  • 23. CIRS . Computerized imaging Reference System (CIRS) is a company for improving the art and science of medical imaging for tissue simulation and phantom technology. 2015;
  • 24. Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT. Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem. 1995; 227(1): 54-68[DOI][PubMed]
  • 25. Bosschaart N, Edelman GJ, Aalders MC, van Leeuwen TG, Faber DJ. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med Sci. 2014; 29(2): 453-79[DOI][PubMed]
  • 26. Roggan A, Friebel M, Do Rschel K, Hahn A, Mu Ller G. Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm. J Biomed Opt. 1999; 4(1): 36-46[DOI][PubMed]
  • 27. Hale GM, Querry MR. Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. Appl Opt. 1973; 12(3): 555-63[DOI][PubMed]
  • 28. van Veen RL, Sterenborg HJ, Pifferi A, Torricelli A, Chikoidze E, Cubeddu R. Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. J Biomed Opt. 2005; 10(5): 54004[DOI][PubMed]
  • 29. Bydlon TM, Barry WT, Kennedy SA, Brown JQ, Gallagher JE, Wilke LG, et al. Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and patent blue dye on underlying sources of contrast. PLoS One. 2012; 7(12)[DOI][PubMed]
  • 30. Nachabe R, Evers DJ, Hendriks BH, Lucassen GW, van der Voort M, Rutgers EJ, et al. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods. J Biomed Opt. 2011; 16(8): 87010[DOI][PubMed]
  • 31. Fantini S, Heffer EL, Siebold H, Schutz O. Using near-infrared light to detect breast cancer. Optics Photonics News. 2003; 14(11)
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments