Iranian Journal of Radiology

Published by: Kowsar

Brain Tissue Classification Based on Diffusion Tensor Imaging: A Comparative Study Between Some Clustering Algorithms and Their Effect on Different Diffusion Tensor Imaging Scalar Indices

Ihab Elaff 1 , *
Author Information
1 Computer Engineering Department, Faculty of Engineering, Adnan Menderes University, Aydin, Turkey
Article information
  • Iranian Journal of Radiology: April 01, 2016, 13 (2); e23726
  • Published Online: February 28, 2016
  • Article Type: Research Article
  • Received: October 7, 2014
  • Revised: November 24, 2014
  • Accepted: February 21, 2015
  • DOI: 10.5812/iranjradiol.23726

To Cite: Elaff I. Brain Tissue Classification Based on Diffusion Tensor Imaging: A Comparative Study Between Some Clustering Algorithms and Their Effect on Different Diffusion Tensor Imaging Scalar Indices, Iran J Radiol. 2016 ; 13(2):e23726. doi: 10.5812/iranjradiol.23726.

Copyright © 2016, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. 2000; 4: 1227-46
  • 2. Mortamet B, Zeng D, Gerig G, Prastawa M, Bullitt E. Effects of healthy aging measured by intracranial compartment volumes using a designed MR brain database. Med Image Comput Comput Assist Interv. 2005; 8: 383-91[PubMed]
  • 3. Gur RC, Gunning-Dixon F, Bilker WB, Gur RE. Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cereb Cortex. 2002; 12(9): 998-1003[PubMed]
  • 4. Sidaros A, Engberg AW, Sidaros K, Liptrot MG, Herning M, Petersen P, et al. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain. 2008; 131: 559-72[DOI][PubMed]
  • 5. Holtmannspotter M, Peters N, Opherk C, Martin D, Herzog J, Bruckmann H, et al. Diffusion magnetic resonance histograms as a surrogate marker and predictor of disease progression in CADASIL: a two-year follow-up study. Stroke. 2005; 36(12): 2559-65[DOI][PubMed]
  • 6. Albrecht J, Dellani PR, Muller MJ, Schermuly I, Beck M, Stoeter P, et al. Voxel based analyses of diffusion tensor imaging in Fabry disease. J Neurol Neurosurg Psychiatry. 2007; 78(9): 964-9[DOI][PubMed]
  • 7. Concha L, Gross DW, Beaulieu C. Diffusion tensor tractography of the limbic system. AJNR Am J Neuroradiol. 2005; 26(9): 2267-74[PubMed]
  • 8. Bomans M, Hohne KH, Tiede U, Riemer M. 3-D segmentation of MR images of the head for 3-D display. IEEE Trans Med Imaging. 1990; 9(2): 177-83[DOI][PubMed]
  • 9. Westbrook C, Roth CK. MRI in Practice. 2013;
  • 10. Scampini J. Introduction to computed tomography (CT) medical imaging. 2014;
  • 11. Mori S. Introduction to diffusion tensor imaging. 2007;
  • 12. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994; 66(1): 259-67[DOI]
  • 13. Liu T, Li H, Wong K, Tarokh A, Guo L, Wong ST. Brain tissue segmentation based on DTI data. Neuroimage. 2007; 38(1): 114-23[DOI][PubMed]
  • 14. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996; 111(3): 209-19[PubMed]
  • 15. Vilanova A, Zhang S, Kindlmann G, Laidlaw D. An introduction to visualization of diffusion tensor imaging and its applications. Visual Process Tensor Fields. 2006; : 121-53
  • 16. Zarei M, Johansen-Berg H, Matthews PM. Diffusion tensor imaging and tractography in clinical neuro sciences. Iran J Radiol. 2003; 1(2): 45-52
  • 17. El-Aff IAI. Extraction of Human Heart Conduction Network from Diffusion Tensor MRI. The 7th IASTED International Conference on Biomedical Engineering. : 217-22
  • 18. Human brain tissues segmentation based on DTI data. 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA). : 876-81
  • 19. Stark DD, Bradley WG. Magnetic Resonance Imaging. 1999;
  • 20. Lufkin RB. The MRI Manual. 1998;
  • 21. Khotanlou H, Colliot O, Atif J, Bloch I. 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Sys. 2009; 160(10): 1457-73
  • 22. Dubey RB, Hanmandlu M, Gupta SK, Gupta SK. The brain MR Image segmentation techniques and use of diagnostic packages. Acad Radiol. 2010; 17(5): 658-71[DOI][PubMed]
  • 23. Portela NM, Cavalcanti GDC, Ren TI. Semi-supervised clustering for MR brain image segmentation. Expert Sys Appl. 2014; 41(4): 1492-7[DOI]
  • 24. Clarke LP, Velthuizen RP, Camacho MA. MRI Segmentation: Methods and Applications. Magnet Reson Imaging. 1995; 13: 343–68
  • 25. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001; 20(1): 45-57[DOI][PubMed]
  • 26. Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation. The Second World Enformatika Conference.
  • 27. Perez P. Markov random fields and images. 1998; : 31
  • 28. Demirkaya O, Asyali MK, Sahoo PK. Image Processing with MATLAB: Application in Medicine and Biology. 2009;
  • 29. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber. 1979; 9: 62-6
  • 30. Wagsta K, Cardie C, Rogers S, Schroedl S. Constrained K-means Clustering with Background Knowledge. Proceedings of the Eighteenth International Conference on Machine Learning. : 577-84
  • 31. Dempster AP, Laird NM, Rubin Maximum DB. Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc, B. 1977; 39: 1-38
  • 32. Wen Y, He L, von Deneen KM, Lu Y. Brain tissue classification based on DTI using an improved fuzzy C-means algorithm with spatial constraints. Magn Reson Imaging. 2013; 31(9): 1623-30[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments