Iranian Journal of Radiology

Published by: Kowsar

Histopathological Evaluation of the Effectiveness of Glycyrrhizic Acid as a Radioprotector Against the Development of Radiation-Induced Lung Fibrosis

Soheila Refahi 1 , Bagher Minaei 2 , Gholam Hassan Haddadi 3 , Samideh Khoei 4 , Azam Bakhtiarian 5 , Masoud Pourissa 6 and Abbas Takavar 7 , *
Authors Information
1 Department of Medical Physics, Ardabil University of Medical Sciences, Ardabil, Iran
2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Radiology, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran
4 Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
5 Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
6 Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
7 Department of Medical Physics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Article information
  • Iranian Journal of Radiology: April 01, 2016, 13 (2); e21012
  • Published Online: March 21, 2016
  • Article Type: Research Article
  • Received: June 14, 2014
  • Revised: October 15, 2014
  • Accepted: October 19, 2014
  • DOI: 10.5812/iranjradiol.21012

To Cite: Refahi S, Minaei B, Haddadi G H, Khoei S, Bakhtiarian A, et al. Histopathological Evaluation of the Effectiveness of Glycyrrhizic Acid as a Radioprotector Against the Development of Radiation-Induced Lung Fibrosis, Iran J Radiol. 2016 ; 13(2):e21012. doi: 10.5812/iranjradiol.21012.

Abstract
Copyright © 2016, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Calveley VL, Jelveh S, Langan A, Mahmood J, Yeung IW, Van Dyk J, et al. Genistein can mitigate the effect of radiation on rat lung tissue. Radiat Res. 2010; 173(5): 602-11[DOI][PubMed]
  • 2. Coggle JE, Lambert BE, Moores SR. Radiation effects in the lung. Environ Health Perspect. 1986; 70: 261-91[PubMed]
  • 3. Bese NS, Munzuroglu F, Uslu B, Arbak S, Yesiladali G, Sut N, et al. Vitamin E protects against the development of radiation-induced pulmonary fibrosis in rats. Clin Oncol (R Coll Radiol). 2007; 19(4): 260-4[DOI][PubMed]
  • 4. Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003; 4(9): 529-36[PubMed]
  • 5. Finkelstein JN, Johnston CJ, Baggs R, Rubin P. Early alterations in extracellular matrix and transforming growth factor beta gene expression in mouse lung indicative of late radiation fibrosis. Int J Radiat Oncol Biol Phys. 1994; 28(3): 621-31[PubMed]
  • 6. Rodemann HP, Bamberg M. Cellular basis of radiation-induced fibrosis. Radiother Oncol. 1995; 35(2): 83-90[PubMed]
  • 7. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 1995; 33(1): 99-109[DOI][PubMed]
  • 8. Anscher MS, Kong FM, Andrews K, Clough R, Marks LB, Bentel G, et al. Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 1998; 41(5): 1029-35[PubMed]
  • 9. Fu XL, Huang H, Bentel G, Clough R, Jirtle RL, Kong FM, et al. Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys. 2001; 50(4): 899-908[PubMed]
  • 10. Chen Y, Williams J, Ding I, Hernady E, Liu W, Smudzin T, et al. Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol. 2002; 12(1 Suppl 1): 26-33[PubMed]
  • 11. Poli G, Parola M. Oxidative damage and fibrogenesis. Free Radic Biol Med. 1997; 22(1-2): 287-305[PubMed]
  • 12. Haroon ZA, Raleigh JA, Greenberg CS, Dewhirst MW. Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann Surg. 2000; 231(1): 137-47[PubMed]
  • 13. Vujaskovic Z, Anscher MS, Feng QF, Rabbani ZN, Amin K, Samulski TS, et al. Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys. 2001; 50(4): 851-5[PubMed]
  • 14. Kang SK, Rabbani ZN, Folz RJ, Golson ML, Huang H, Yu D, et al. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2003; 57(4): 1056-66[PubMed]
  • 15. Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, et al. Radioprotection by plant products: present status and future prospects. Phytother Res. 2005; 19(1): 1-22[DOI][PubMed]
  • 16. Agarwal SS, Singh VK. Medicinal Plants and Synthetic Peptides Part II: Synthetic Peptides. P Indian Natl Sci Acad. 1999; 65: 179-204
  • 17. Kroes BH, Beukelman CJ, van den Berg AJ, Wolbink GJ, van Dijk H, Labadie RP. Inhibition of human complement by beta-glycyrrhetinic acid. Immunology. 1997; 90(1): 115-20[PubMed]
  • 18. Belinky PA, Aviram M, Mahmood S, Vaya J. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radic Biol Med. 1998; 24(9): 1419-29[PubMed]
  • 19. Vaya J, Belinky PA, Aviram M. Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic Biol Med. 1997; 23(2): 302-13[PubMed]
  • 20. Rossi T, Benassi L, Magnoni C, Ruberto AI, Coppi A, Baggio G. Effects of glycyrrhizin on UVB-irradiated melanoma cells. In Vivo. 2005; 19(1): 319-22[PubMed]
  • 21. Gandhi NM, Maurya DK, Salvi V, Kapoor S, Mukherjee T, Nair CK. Radioprotection of DNA by glycyrrhizic acid through scavenging free radicals. J Radiat Res. 2004; 45(3): 461-8[PubMed]
  • 22. Takavar A, Minaei B, Hadadi GH, Khoei S, Refahi S, Behrouzkia Z, et al. Late histopathological findings in the thoracic irradiation: A preliminary study in the animal model. Life Sci J. 2013; 10(7s)
  • 23. Pavlova SI, Uteshev BS, Sergeev AV. Possible Mechanisms of Antitoxicant, Anticarcinogen, and Antitumor Properties (A Review). Pharm Chem J. 2003; 37(6): 314-7[DOI]
  • 24. Afnan Q, Adil MD, Nissar-Ul A, Rafiq AR, Amir HF, Kaiser P, et al. Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts. Phytomedicine. 2012; 19(7): 658-64[DOI][PubMed]
  • 25. Ward JF. The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review. Int J Radiat Biol. 1990; 57(6): 1141-50[PubMed]
  • 26. Kumar KS, Vaishnav YN, Weiss JF. Radioprotection by antioxidant enzymes and enzyme mimetics. Pharmacol Ther. 1988; 39(1-3): 301-9[PubMed]
  • 27. Weiss JF, Landauer MR. Radioprotection by antioxidants. Ann N Y Acad Sci. 2000; 899: 44-60[PubMed]
  • 28. Shetty TK, Satav JG, Nair CK. Protection of DNA and microsomal membranes in vitro by Glycyrrhiza glabra L. against gamma irradiation. Phytother Res. 2002; 16(6): 576-8[DOI][PubMed]
  • 29. Merrill WW. Radiation-induced lung injury. 2011;
  • 30. Serin M, Gulbas H, Gurses I, Erkal HS, Yucel N. The histopathological evaluation of the effectiveness of melatonin as a protectant against acute lung injury induced by radiation therapy in a rat model. Int J Radiat Biol. 2007; 83(3): 187-93[PubMed]
  • 31. Maasilta P. Radiation-induced lung injury. From the chest physician's point of view. Lung Cancer. 1991; 7(6): 367-84[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments