Iranian Journal of Radiology

Published by: Kowsar

Histopathological Evaluation of the Effectiveness of Glycyrrhizic Acid as a Radioprotector Against the Development of Radiation-Induced Lung Fibrosis

Soheila Refahi 1 , Bagher Minaei 2 , Gholam Hassan Haddadi 3 , Samideh Khoei 4 , Azam Bakhtiarian 5 , Masoud Pourissa 6 and Abbas Takavar 7 , *
Authors Information
1 Department of Medical Physics, Ardabil University of Medical Sciences, Ardabil, Iran
2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Radiology, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran
4 Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
5 Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
6 Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
7 Department of Medical Physics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Article information
  • Iranian Journal of Radiology: April 01, 2016, 13 (2); e21012
  • Published Online: March 21, 2016
  • Article Type: Research Article
  • Received: June 14, 2014
  • Revised: October 15, 2014
  • Accepted: October 19, 2014
  • DOI: 10.5812/iranjradiol.21012

To Cite: Refahi S, Minaei B, Haddadi G H, Khoei S, Bakhtiarian A, et al. Histopathological Evaluation of the Effectiveness of Glycyrrhizic Acid as a Radioprotector Against the Development of Radiation-Induced Lung Fibrosis, Iran J Radiol. 2016 ; 13(2):e21012. doi: 10.5812/iranjradiol.21012.

Copyright © 2016, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Calveley VL, Jelveh S, Langan A, Mahmood J, Yeung IW, Van Dyk J, et al. Genistein can mitigate the effect of radiation on rat lung tissue. Radiat Res. 2010; 173(5): 602-11[DOI][PubMed]
  • 2. Coggle JE, Lambert BE, Moores SR. Radiation effects in the lung. Environ Health Perspect. 1986; 70: 261-91[PubMed]
  • 3. Bese NS, Munzuroglu F, Uslu B, Arbak S, Yesiladali G, Sut N, et al. Vitamin E protects against the development of radiation-induced pulmonary fibrosis in rats. Clin Oncol (R Coll Radiol). 2007; 19(4): 260-4[DOI][PubMed]
  • 4. Stone HB, Coleman CN, Anscher MS, McBride WH. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003; 4(9): 529-36[PubMed]
  • 5. Finkelstein JN, Johnston CJ, Baggs R, Rubin P. Early alterations in extracellular matrix and transforming growth factor beta gene expression in mouse lung indicative of late radiation fibrosis. Int J Radiat Oncol Biol Phys. 1994; 28(3): 621-31[PubMed]
  • 6. Rodemann HP, Bamberg M. Cellular basis of radiation-induced fibrosis. Radiother Oncol. 1995; 35(2): 83-90[PubMed]
  • 7. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 1995; 33(1): 99-109[DOI][PubMed]
  • 8. Anscher MS, Kong FM, Andrews K, Clough R, Marks LB, Bentel G, et al. Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 1998; 41(5): 1029-35[PubMed]
  • 9. Fu XL, Huang H, Bentel G, Clough R, Jirtle RL, Kong FM, et al. Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys. 2001; 50(4): 899-908[PubMed]
  • 10. Chen Y, Williams J, Ding I, Hernady E, Liu W, Smudzin T, et al. Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol. 2002; 12(1 Suppl 1): 26-33[PubMed]
  • 11. Poli G, Parola M. Oxidative damage and fibrogenesis. Free Radic Biol Med. 1997; 22(1-2): 287-305[PubMed]
  • 12. Haroon ZA, Raleigh JA, Greenberg CS, Dewhirst MW. Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann Surg. 2000; 231(1): 137-47[PubMed]
  • 13. Vujaskovic Z, Anscher MS, Feng QF, Rabbani ZN, Amin K, Samulski TS, et al. Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys. 2001; 50(4): 851-5[PubMed]
  • 14. Kang SK, Rabbani ZN, Folz RJ, Golson ML, Huang H, Yu D, et al. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2003; 57(4): 1056-66[PubMed]
  • 15. Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, et al. Radioprotection by plant products: present status and future prospects. Phytother Res. 2005; 19(1): 1-22[DOI][PubMed]
  • 16. Agarwal SS, Singh VK. Medicinal Plants and Synthetic Peptides Part II: Synthetic Peptides. P Indian Natl Sci Acad. 1999; 65: 179-204
  • 17. Kroes BH, Beukelman CJ, van den Berg AJ, Wolbink GJ, van Dijk H, Labadie RP. Inhibition of human complement by beta-glycyrrhetinic acid. Immunology. 1997; 90(1): 115-20[PubMed]
  • 18. Belinky PA, Aviram M, Mahmood S, Vaya J. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radic Biol Med. 1998; 24(9): 1419-29[PubMed]
  • 19. Vaya J, Belinky PA, Aviram M. Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic Biol Med. 1997; 23(2): 302-13[PubMed]
  • 20. Rossi T, Benassi L, Magnoni C, Ruberto AI, Coppi A, Baggio G. Effects of glycyrrhizin on UVB-irradiated melanoma cells. In Vivo. 2005; 19(1): 319-22[PubMed]
  • 21. Gandhi NM, Maurya DK, Salvi V, Kapoor S, Mukherjee T, Nair CK. Radioprotection of DNA by glycyrrhizic acid through scavenging free radicals. J Radiat Res. 2004; 45(3): 461-8[PubMed]
  • 22. Takavar A, Minaei B, Hadadi GH, Khoei S, Refahi S, Behrouzkia Z, et al. Late histopathological findings in the thoracic irradiation: A preliminary study in the animal model. Life Sci J. 2013; 10(7s)
  • 23. Pavlova SI, Uteshev BS, Sergeev AV. Possible Mechanisms of Antitoxicant, Anticarcinogen, and Antitumor Properties (A Review). Pharm Chem J. 2003; 37(6): 314-7[DOI]
  • 24. Afnan Q, Adil MD, Nissar-Ul A, Rafiq AR, Amir HF, Kaiser P, et al. Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts. Phytomedicine. 2012; 19(7): 658-64[DOI][PubMed]
  • 25. Ward JF. The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review. Int J Radiat Biol. 1990; 57(6): 1141-50[PubMed]
  • 26. Kumar KS, Vaishnav YN, Weiss JF. Radioprotection by antioxidant enzymes and enzyme mimetics. Pharmacol Ther. 1988; 39(1-3): 301-9[PubMed]
  • 27. Weiss JF, Landauer MR. Radioprotection by antioxidants. Ann N Y Acad Sci. 2000; 899: 44-60[PubMed]
  • 28. Shetty TK, Satav JG, Nair CK. Protection of DNA and microsomal membranes in vitro by Glycyrrhiza glabra L. against gamma irradiation. Phytother Res. 2002; 16(6): 576-8[DOI][PubMed]
  • 29. Merrill WW. Radiation-induced lung injury. 2011;
  • 30. Serin M, Gulbas H, Gurses I, Erkal HS, Yucel N. The histopathological evaluation of the effectiveness of melatonin as a protectant against acute lung injury induced by radiation therapy in a rat model. Int J Radiat Biol. 2007; 83(3): 187-93[PubMed]
  • 31. Maasilta P. Radiation-induced lung injury. From the chest physician's point of view. Lung Cancer. 1991; 7(6): 367-84[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments