Iranian Journal of Radiology

Published by: Kowsar

The Effect of Inversion Time on the Relationship Between Iron Oxide Nanoparticles Concentration and Signal Intensity in T1-Weighted MR Images

Hodaiseh Saharkhiz 1 , 2 , Nahideh Gharehaghaji 3 , * , Mahmood Nazarpoor 3 , Asghar Mesbahi 1 and Masoud Pourissa 4
Authors Information
1 Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
2 Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
3 Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
4 Department of Radiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
Article information
  • Iranian Journal of Radiology: June 01, 2014, 11 (2); e12667
  • Published Online: June 15, 2014
  • Article Type: Research ArticlePhysics
  • Received: June 2, 2013
  • Revised: August 6, 2013
  • Accepted: November 17, 2013
  • DOI: 10.5812/iranjradiol.12667

To Cite: Saharkhiz H, Gharehaghaji N, Nazarpoor M, Mesbahi A, Pourissa M. The Effect of Inversion Time on the Relationship Between Iron Oxide Nanoparticles Concentration and Signal Intensity in T1-Weighted MR Images, Iran J Radiol. 2014 ; 11(2):e12667. doi: 10.5812/iranjradiol.12667.

Abstract
Copyright © 2014, Tehran University of Medical Sciences and Iranian Society of Radiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Berry C. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys. 2009; 42(22): 224003
  • 2. Arsalani N, Fattahi H, Nazarpoor M. Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett. 2010; 4(6): 329-38
  • 3. Mahmoudi M, Shokrgozar MA, Sardari S, Moghadam MK, Vali H, Laurent S, et al. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale. 2011; 3(3): 1127-38[DOI][PubMed]
  • 4. Zeng L, Ren W, Zheng J, Cui P, Wu A. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys. 2012; 14(8): 2631-6[DOI][PubMed]
  • 5. Stephen ZR, Kievit FM, Zhang M. Magnetite Nanoparticles for Medical MR Imaging. Mater Today (Kidlington). 2011; 14(7-8): 330-8[DOI][PubMed]
  • 6. Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJ, Wattjes MP, van der Pol SM, et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain. 2008; 131: 800-7[DOI][PubMed]
  • 7. Dousset V, Brochet B, Deloire MS, Lagoarde L, Barroso B, Caille JM, et al. MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR Am J Neuroradiol. 2006; 27(5): 1000-5[PubMed]
  • 8. Lutz AM, Weishaupt D, Persohn E, Goepfert K, Froehlich J, Sasse B, et al. Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics. Radiology. 2005; 234(3): 765-75[DOI][PubMed]
  • 9. Botnar R. Cardiovascular Molecular Imaging. Mag Reson Med. 2011; 19: 1-7
  • 10. Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem. 2009; 19(35): 6274-93[DOI]
  • 11. Gimi B, Pathak AP, Ackerstaff E, Glunde K, Artemov D, Bhujwalla ZM. Molecular Imaging of Cancer: Applications of Magnetic Resonance Methods. Proc IEEE Inst Electr Electron Eng. 2005; 93(4): 784-99[DOI][PubMed]
  • 12. Shan L. Superparamagnetic iron oxide nanoparticles (SPION) stabilized by alginate. Molecular Imaging and Contrast Agent Database (MICAD). 2004; [PubMed]
  • 13. Loubeyre P, Zhao S, Canet E, Abidi H, Benderbous S, Revel D. Ultrasmall superparamagnetic iron oxide particles (AMI 227) as a blood pool contrast agent for MR angiography: experimental study in rabbits. J Magn Reson Imaging. 1997; 7(6): 958-62[PubMed]
  • 14. Bogaert J, Taylor AM, Van Kerkhove F, Dymarkowski S. Use of inversion recovery contrast-enhanced MRI for cardiac imaging: spectrum of applications. AJR Am J Roentgenol. 2004; 182(3): 609-15[DOI][PubMed]
  • 15. Chambon C, Clement O, Le Blanche A, Schouman-Claeys E, Frija G. Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging. 1993; 11(4): 509-19[PubMed]
  • 16. Canet E, Revel D, Forrat R, Baldy-Porcher C, de Lorgeril M, Sebbag L, et al. Superparamagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond T1-weighted MRI. Magn Reson Imaging. 1993; 11(8): 1139-45[PubMed]
  • 17. Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, et al. Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase i study. Radiology. 2004; 231(2): 474-81[DOI][PubMed]
  • 18. Nazarpoor M. The Effect of Repetition Time on the Maximum Linear Relationship Between Contrast Agent Concentration and Signal Intensity on T1-Weighted Image Using Inversion Recovery (IR) Sequence. Iran J Radiol. 2009; 6(4)
  • 19. Warmuth C, Schnorr J, Kaufels N, Wagner S, Pilgrimm H, Hamm B, et al. Whole-heart coronary magnetic resonance angiography: contrast-enhanced high-resolution, time-resolved 3D imaging. Invest Radiol. 2007; 42(8): 550-7[DOI][PubMed]
  • 20. van Walderveen MA, van Schijndel RA, Pouwels PJ, Polman CH, Barkhof F. Multislice T1 relaxation time measurements in the brain using IR-EPI: reproducibility, normal values, and histogram analysis in patients with multiple sclerosis. J Magn Reson Imaging. 2003; 18(6): 656-64[DOI][PubMed]
  • 21. Mohamed FB, Vinitski S, Faro SH, Ortega HV, Enochs S. A simple method to improve image nonuniformity of brain MR images at the edges of a head coil. J Comput Assist Tomogr. 1999; 23(6): 1008-12[PubMed]
  • 22. Nazarpoor M. Effect of concentration of contrast agent on the inflow effect for measuring absolute perfusion by use of inversion recovery T(1)-weighted TurboFLASH images. Radiol Phys Technol. 2012; 5(1): 86-91[DOI][PubMed]
  • 23. Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006; 58(14): 1471-504[DOI][PubMed]
  • 24. Ahlstrom KH, Johansson LO, Rodenburg JB, Ragnarsson AS, Akeson P, Borseth A. Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology. 1999; 211(3): 865-9[DOI][PubMed]
  • 25. Taylor AM, Panting JR, Keegan J, Gatehouse PD, Jhooti P, Yang GZ, et al. Use of the intravascular contrast agent NC100150 injection in spin-echo and gradient-echo imaging of the heart. J Cardiovasc Magn Reson. 1999; 1(1): 23-32[PubMed]
  • 26. Takahama K, Amano Y, Hayashi H, Kumazaki T, Phantom S. T1-weighted magnetic resonance imaging sequence appropriate for the evaluation of the longitudinal relaxation effect of superparamagnetic iron oxide: a phantom study. J Nippon Med Sch. 2002; 69(6): 571-6[PubMed]
  • 27. Schnorr J, Taupitz M, Schellenberger EA, Warmuth C, Fahlenkamp UL, Wagner S, et al. Cardiac magnetic resonance angiography using blood-pool contrast agents: comparison of citrate-coated very small superparamagnetic iron oxide particles with gadofosveset trisodium in pigs. Rofo. 2012; 184(2): 105-12[DOI][PubMed]
  • 28. Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology. 2002; 223(2): 432-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments